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TCP is the most important transport protocol today, pro-
viding in-order reliable transmission of byte streams. 

However, current network characteristics and application 
requirements are far different from those when TCP was ini-
tially designed. TCP has limitations in many popular networks 
such as wireless networks, high-speed networks, and heteroge-
neous multi-path networks.

TCP suffers from the problems of low throughput and high 
latency due to its use of loss-based congestion control and 
retransmission-based loss recovery schemes. Coding is prom-
ising in improving the performance of TCP by introducing 
redundant information to encode packets for forward error 
correction (FEC). This allows for faster loss recovery for TCP, 
which helps to alleviate the issues associated with the through-
put, latency, and receiving buffer constraints. Although FEC 
has been widely studied at the link layer as a complement to 
automatic repeat request (ARQ), it has not been well explored 
yet in TCP.

There are many challenges to apply coding with TCP. Cod-
ing can conflict with TCP design and deployment, and compro-
mise TCP friendliness. The data control and reliability of TCP 
are tightly coupled with the congestion control in byte-orient-
ed sequence number management. The amount of redundant 
information added for coding needs to be determined careful-
ly. There is a trade-off between reducing the coding overhead 
and improving the transmission reliability at the cost of higher 
transmission redundancy. To enable the practical use of cod-
ing in new protocols, it is essential to ensure backward com-
patibility for incremental deployment.

In this article, we explore the possibilities of designing a 
practical transport protocol with better performance employ-
ing coding technologies. We first present the limitations of the 
standard TCP, and explain how coding can be used in TCP. 
We then analyze the opportunities and challenges of applying 
coding in TCP, and discuss the strengths and weaknesses of 

existing solutions. Finally, we conclude the work with a brief 
summary.

End-to-End Coding for TCP: Opportunities
TCP has been observed to be ill suited for many emerging 
applications. We first analyze the problems from the perspec-
tive of TCP design, and then present the opportunities that 
coding technologies can bring to alleviate the problems.

Limitations of TCP
The inadequacy of standard TCP in wireless networks, high-
speed data center networks (DCNs), and heterogeneous multi-
path networks has been extensively documented. Here we list 
three situations where coding has potential to improve the 
TCP performance.

First, packet loss may result in TCP throughput much lower 
than the available path capacity. TCP regards losses as indi-
cations of congestion and halves its congestion window in fast 
retransmission or resets to the initial value upon timeout. 
However, packet losses may be caused by reasons other than 
congestion. For example, TCP can mistakenly take the losses 
due to bad link conditions as congestion signals and reduce its 
window size unexpectedly although the path is uncongested. 
This significantly affects the performance as the throughput of 
TCP is approximately inversely proportional to the square root 
of the packet loss rate [1].

In addition, TCP does not differentiate between congestion 
levels, and reacts sharply to transient and mild congestion. For 
high bandwidth and high delay networks, it will take a long 
time to reach the available bandwidth after a loss. It is report-
ed that a single packet loss in 10,000 is enough to reduce TCP 
throughput to a third over a 50 ms gigabit link, and one loss in 
1000 leads the throughput to drop by an order of magnitude 
[2].

Second, delay-sensitive applications (i.e., real-time or 
interactive applications) suffer from slow recovery of lost 
packets in TCP. Packet losses are detected by either triple 
duplicate acknowledgments or retransmission timer expiration. 
Although the first method targets fast lost packet retransmis-
sion, the recovery delay is still high as at least three packets 
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after the loss need to be received to confirm loss. In addition, 
the measurement results show that most losses occur at tails 
for latency-sensitive flows and are repaired through expensive 
retransmission timeouts (RTOs) [3]. The minimum value of an 
RTO is normally set to 200 ms, which is too long for low-laten-
cy networks such as DCNs.

The packets behind the lost one(s) cannot be properly deliv-
ered to applications until the losses are recovered, thus hurting 
the quality of user experience of latency-sensitive applications. 
It is well known that web latency inversely correlates with 
revenue and profit. For instance, Amazon estimates that every 
100 ms increase in latency cuts profits by 1 percent [3]. Thus, a 
faster loss recovery mechanism is desired.

The third issue is the buffer limitation as a result of out-
of-order delivery. When a packet is lost or delayed, the sub-
sequent packets need to be stored in the receiving buffer of 
TCP. Once the receiving buffer is fully occupied by out-of-or-
der packets, the advertising window decreases to zero, which 
triggers the flow control mechanism driven by receivers. As 
a result, data transmissions are blocked even when the link is 
unoccupied, which not only reduces the throughput but also 
introduces a large delay.

The receiving buffer size is usually recommended to be set 
to twice the bandwidth-delay product (BDP), which allows 
the transmission to continue during fast retransmission [4]. 
However in heterogeneous multi-path networks, even if the 
BDP of every single path is small, the buffer size can still be a 
problem. To make full use of such heterogeneous networks, a 
multi-path extension of TCP, called Multi-Path TCP (MPTCP)
[4], has been proposed to build multiple subflows in one con-
nection. The subflows generally go through different paths 
and are transmitted concurrently. The BDP of MPTCP is cal-
culated as the product of the aggregate bandwidth and the 
maximum round-trip time (RTT) of different paths, which is 
often much larger than that of single-path TCP. As the RTTs 
and loss rates of subflows can be very different, especially in 
heterogeneous networks, the buffer size could be set too large 
in MPTCP.

Coding for TCP
Coding is promising to solve the problems mentioned above 
as it can provide better reliability and loss tolerance and faster 
loss recovery for TCP. The usefulness of coding for TCP was 
first investigated and verified by G. Karlsson et al. [5].

The main function of coding for TCP is to perform FEC. 
With FEC, a sender encodes its messages in a redundant way 
by using an error correction code (ECC), and the receiver can 
recover the lost packets if enough coded packets are received 
without waiting for retransmission. FEC is not currently used 
in default TCP. To incorporate FEC into TCP, coding is not 
applied at the bit level, but at the packet level.

Coding at the packet level is commonly referred to as net-

work coding. The basic idea of network coding 
is to mix data from different packets across time 
and across flows into one packet. It has now been 
used at various layers including the application 
layer, transport layer, network layer, and even 
link layer. The coded packets are usually linear 
combinations of the source packets. For example, 
as illustrated in Fig. 1, an unlimited number of 
random linear combinations of the four source 
packets can be generated and sent over lossy 
channels. When four arbitrary linear independent 
coded packets are received, the four source pack-
ets can be recovered.

Applying coding in TCP has several advan-
tages. First, coding in TCP is complementary to 

approaches such as multipath opportunistic routing, which 
exploits the broadcast nature of the wireless medium. Second, 
it is unnecessary to make changes in network devices such as 
routers, switches, and network interfaces. Third, to implement 
coding, the option field of TCP can be leveraged to negotiate 
whether coding can be used. Moreover, to help better sched-
ule the coding process, network condition parameters such as 
RTT, congestion level, loss rate, and bandwidth can be esti-
mated in TCP. Finally, the socket buffers of TCP can be used 
directly to store data for encoding and decoding.

End-to-end Coding for TCP: Challenges
The design and implementation of coding techniques for TCP 
need to address several issues pertaining to usability and effec-
tiveness. We summarize the five main design issues in Table 
1, including TCP friendliness, congestion control, redundancy 
tuning, coding overhead, and compatibility. They can be used 
as the evaluation criteria for the design of coded TCP variants.

TCP Friendliness
It is important to ensure fair sharing of network resourc-
es among different flows. With the widespread deployment 
of TCP, the discussion of fairness for transport protocols 
moves toward TCP-friendly, which means that new transport 
protocols should behave like an ordinary TCP flow under 
congestion conditions and share no more bandwidth than a 
TCP flow when competing for the same link [6]. To ensure 
TCP-friendly transmissions, a flow should not send more 
packets than an ordinary TCP flow under comparable condi-
tions. On the other hand, coding schemes introduce redun-
dancy to recover the lost packets. There is a trade-off when 
enforcing coded TCP variants to be friendly with standard 
TCP. When the loss rate is high, coded TCP will generally 
have higher goodput while standard TCP is kept busy with 
retransmissions; however, the goodput of coded TCP may be 
lower when the loss rate is low. Coded TCP can enjoy a high-
er benefit and can be more flexible to apply in a new network 
environment not dominated by conventional TCP, such as in 
the popular DCNs.

Congestion Control
Congestion control algorithms play an important role in 
TCP. The Internet Engineering Task Force (IETF) standard-
ized TCP congestion control algorithm is based on Reno, 
which takes loss as the signal of congestion. Other types of 
delay-based congestion control algorithms such as Vegas 
and Westwood monitor congestion based on estimation of 
RTT. Introducing coding into TCP may impact congestion 
detection (loss detection or RTT estimation) to different 
extents depending on the design of codes and acknowledg-
ment methods. As coding can mask packet losses, it may 

Figure 1. Example of coding for TCP.
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seriously affect loss detection. Relatively speaking, RTT esti-
mation is easier to be maintained and has fewer restrictions 
on the use of coding.

Redundancy Tuning
The use of coding helps to recover lost data more quickly 
at the cost of higher bandwidth consumption. Decoding will 
fail if the number of redundant packets is smaller than that 
of the lost ones, in which case coding-based recovery falls 
back to acknowledgment-based recovery and provides little 
benefit. To make full use of bandwidth as well as recover 
data immediately, coding rate should be tuned properly. Pre-
cise estimation and prediction of loss rate can help deter-
mine the appropriate coding rate proactively; however, the 
prediction is difficult for a network with varying conditions. 
On the other hand, timely and adequate feedback is useful 
for adjusting the coding rate reactively. Moreover, due to 
the buffer or delay limit, block codes (also referred to as 
batch-based codes) are often used. To reduce the latency, it 
may help to increase the redundancy and carefully select an 
appropriate block size.

Coding Overhead
Coding would naturally introduce extra overhead. First, 
it takes time to perform encoding and decoding, which 
introduces extra latency. For latency-sensitive applications, 
coding latency cannot be ignored. Second, the redundan-
cy introduced by coding costs extra bandwidth. Enough 
redundant packets are needed to compensate for lost ones. 
In addition, for protocols to deliver the coding informa-
tion, additional bandwidth will incur cost to transmit a cod-
ing header to indicate the information of which the coded 
packet consists and how many coded symbols are received. 
Third, the coding process uses computation resources and 
may induce energy problems for power-constrained mobile 
terminals. Coding can be useful only when its gain is larger 
than the overheads.

Compatibility
For TCP extensions, compatibility is also an issue. The com-
patibilities mainly include application compatibility, TCP 
compatibility, and network compatibility [4]. Application 
compatibility can be realized through socket extensions. TCP 
compatibility is included in TCP friendliness and has been 
discussed separately. For network compatibility, coded TCP is 
expected to work transparently in the presence of various mid-
dleboxes in the Internet, which may be difficult to handle. The 
compatibility requirements make the design of coded TCP 
variants more complex [10].

Applications
There have been some research effort on exploiting end-to-
end coding to improve TCP performance. In this section, we 
review the work on three typical categories of applications: 
improving the throughput of wireless networks, reducing the 
latency caused by loss, and solving the out-of-order problem 
of MPTCP in heterogeneous multi-path networks. The main 
characteristics of the presented work are summarized and 
compared in Table 2.

Improve Throughput of Wireless Networks
In wireless networks, the dynamic and uncertain transmission 
medium makes loss a common problem. Due to the loss-based 
congestion control used in TCP, wireless losses can cause 
sending rate reduction and consequent significant throughput 
degradation even when the network is not congested. Schemes 
to solve this problem can be classified into three broad cat-
egories: end-to-end protocols to recover the loss at senders; 
link-layer protocols to provide local transmission reliability; 
and split-connection protocols that break the end-to-end con-
nection into two parts in intermediate nodes. While end-to-
end schemes are not as effective as local recovery techniques 
in handling wireless losses, they are promising since significant 
gains can be achieved without requiring extensive support at 
the network and link layers at routers and base stations [5].

The basic idea of end-to-end coding is to add redundancy 
to facilitate loss recovery. Given a certain loss probability, an 
amount of redundancy is injected into the transmission flow 
such that there are no more lost packets than redundant ones. 
Actually, the loss rate of a path may be very dynamic and can-
not be precisely estimated. L. Baldantoni et al. [5] developed 
an adaptive algorithm to choose the optimal number of redun-
dancy packets considering the connection environment. The 
RTT is estimated in a normal way, while the bandwidth and 
loss rate are estimated in a similar way through explicit feed-
back from the receiver. Experiments show that TCP with cod-
ing outperforms the existing TCP (New Reno and SACK) over 
a large range of loss probability and propagation delay. Note 
that end-to-end coding also recovers losses caused by conges-
tion; hence, Reno-based congestion control becomes invalid.

A complete protocol design of a coded TCP variant called 
TCP/NC is presented from theory to implementation in [7]. 
TCP/NC introduced a new acknowledgment mechanism based 
on “degree of freedom” (i.e., a linear combination that reveals 
one unit of new information) to incorporate coding into the 
control algorithm. The receiver acknowledges every degree 
of freedom even if this is not done for a new packet immedi-
ately. For easier deployment, TCP/NC imports a new network 

Table 1. Challenges of applying coding in TCP.

Challenges Classifications Factors

TCP friendliness [6]
Steady state  
Transient state

Fairness  
Aggressiveness and responsiveness

Congestion control [7, 8]
Loss-based (Reno)  
Delay-based (Vegas/Westwood) 
ECN-based

Differentiate wireless loss from congestion loss  
Fairness  
Network compatibility

Redundancy tuning [3, 9]
Proactive  
Reactive 

Packet loss detection and loss  model prediction 
Feedback-based scheduling

Coding overhead [7, 9]
Time cost  
Bandwidth cost  
Computation cost

Code complexity and data arriving rate  
Redundancy setting and  coding header for synchronization  
Code complexity and code implementation

Compatibility [4, 10]
Network compatibility  
Application compatibility

Middleboxes  
Socket extensions
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coding (i.e., NC) layer between the transport layer and the 
network layer to minimize changes to protocols. The network 
coding layer conducts buffering and encoding, decoding, and 
acknowledgment at the sender and receiver, respectively.

The authors first use TCP-Vegas as it is more compatible 
with their modifications. Furthermore, a real-world implemen-
tation with TCP-Reno is presented. Both obtain significant 
gains in throughput over standard TCP in the presence of 
lossy network links. The fairness of TCP is maintained in the 
absence of losses (i.e., the loss rate is set to 0, and no redun-
dancy packet is added), while TCP friendliness is still harmed 
in lossy networks. TCP/NC adds a coding header on top of the 
TCP header to communicate packet combination, which dam-
ages the TCP/IP header and may conflict with middleboxes 
that read TCP headers. Moreover, the coding header intro-
duces a large overhead (i.e., when the coding window has n 
packets, every coded packet needs to carry 4n + 7 extra bytes 
at the header). Besides, TCP/NC adopts random linear coding 
and decodes by performing Gaussian elimination, which has 
high computation complexity, and the latency introduced by 
coding has not been considered yet. Finally, the estimation of 
the various parameters of TCP/NC (e.g., the loss rate) accord-
ing to the connection environment are not mentioned.

The above two methods solved the wireless loss problem 
but cannot react to congestion effectively. To differentiate 
between wireless loss and congestion, LT-TCP [8] exploits 
ECN to assist coding in TCP. Timeout effects due to packet 
erasures are combated using a dynamic and adaptive FEC 
scheme that includes adaptation of TCP’s maximum seg-
ment size. Proactive and reactive FEC overhead enhance 
TCP SACK to protect original segments and retransmissions, 
respectively. LT-TCP improves TCP performance even for 
packet loss rates up to 30 percent.

Reducing Latency Caused by Loss
As mentioned above, timely transmission is critical for some 
web flows and data center flows. Web flows play increasingly 
important roles with the popularity of mobile applications, 
while web service providers are still troubled by the latency 
problem. For data center networks, the partition-aggregation 
workflow pattern requires that every flow have low latency in 
order to provide real-time performance to users.

T. Flach et al. [3] performed a measurement study of bil-

lions of latency-sensitive TCP connections and found that 
flows with packet loss take on average five times longer to 
complete than those without any loss due to the loss detection 
and recovery mechanism of TCP. Measurements show that 
most losses occur at the tail of a transmission burst, which 
does not have enough acknowledgments to trigger fast retrans-
mission; thus, losses are recovered through expensive retrans-
mission timeouts (RTOs).

Unnecessary round-trips or RTOs during loss recovery have 
hampered further latency improvement as the RTT required 
between clients and servers largely determines the overall 
latency of most latency-sensitive flows. Simply reducing the 
interval of RTO does not address the latency problem due 
to frequent spurious timeouts and window reductions. Thus, 
they see the demand for and potentiality of reducing latency 
through the use of coding with TCP.

FEC coding is promising in reducing the delivery latency 
of TCP flows by providing loss recovery without introducing 
round-trip delay. As latency-sensitive flows are generally short, 
the bandwidth overhead introduced by coding can be neglect-
ed. T. Flach et al. [3] proposed a low-overhead mechanism 
referred to as corrective to cooperate FEC with coding. Cor-
rective adds a coded packet for each window of packets, which 
has low bandwidth overhead. The coding is done by XORing 
the payload of packets in the window, which has low computa-
tion overhead.

Corrective is designed as a TCP extension and uses TCP 
options to deliver the number of bytes that the payload 
encodes. Packet losses that are recovered with coded packets 
will be indicated explicitly using a corrective option along with 
acknowledgments. Corrective can recover a single packet loss 
in one window. If more than one packet is lost, the receiver 
will notify the sender with a corrective option to trigger fast 
recovery. Experiments show that Corrective significantly reduc-
es the average latency and the tail of latency.

Corrective is mainly designed for congestion loss in the data 
center environment, where loss rate is relatively low. In wire-
less transmission scenarios, higher redundancy is needed to 
recover more than one loss in one window. With the goal of 
lower latency, the codes must have low complexity.

Besides exploiting coding to reduce the latency by adding 
redundant transmissions, replicated flows can also be transmit-
ted. In data center scenarios, the demand for consistent low 

Table 2. Applications of coding for TCP.

Year Goal Networks TCP- 
friendly

Congestion 
control

Path  
estimation Rateless Retransmit Middle-

boxes 

TCP/NC [7] 2011 Throughput Wireless Aggressive Vegas Yes Yes No No 

A-FEC [5] 2004 Throughput Wireless Aggressive Reno-based Yes Yes Yes No 

LT-TCP [8] 2005 Throughput Wireless Aggressive Reno-based Yes Yes Yes No 

Corrective [3] 2013 Latency DCN
Slightly 
aggressive

Reno-based No No Yes Yes 

Redundancy [11] 2012 Latency — — — — — — — 

Repflow [12] 2014 Latency — — — — — — — 

FMTCP [9] 2014 Both
Multi-
path

Friendly Reno-based Yes Yes No Yes

NC-MPTCP [13] 2012 Both
Multi-
path

Friendly Reno-based Yes Yes No No

SC-MPTCP [14] 2014 Both
Multi-
path

Friendly Reno-based Yes Yes No No

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 04:37:52 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Network • March/April 201672

latency outweighs the need to save the bandwidth. Replication 
of flows is the main method to apply to improve transmission 
reliability [11, 12]. Also in [3], T. Flach et al. proposed proac-
tive, which takes the aggressive stance of proactive transmis-
sions of copies of each TCP segment.

Unlike replication, coding improves reliability via data 
redundancy, which is more flexible in a redundancy setting 
and can use bandwidth more efficiently. Moreover, with pack-
et-level equal cost multi-path (ECMP) routing, coding can 
leverage path redundancy after eliminating the out-of-order 
problem.

Heterogeneous Multi-Path Networks
After much discussion, the idea of concurrent multi-path 
transferring has finally been standardized as a multi-path 
extension of TCP (MPTCP) [4]. MPTCP aims to make full use 
of the capacity of heterogeneous networks concurrently. But 
we need to solve the problem of out-of-order delivery to meet 
its potential.

MPTCP connections have one or more TCP subflows, each 
of which behaves like one TCP flow. The subflows of one 
MPTCP connection usually follow different paths in heteroge-
neous multi-path networks, and experience different RTT and 
loss rates. If one packet is lost on the slowest path, the receiver 
window cannot advance until the lost packet is recovered. The 
duration from sending packets to receiving the acknowledg-
ment will be 2RTT if it is recovered through fast recovery and 
RTT + RTO if it is recovered through timeout retransmission. 
During loss recovery, if the receiver buffer is full, the subflows 
cannot send new packets even if their links are unoccupied. 
Thus, fast and reliable flows would be blocked by bad flows.

Large enough receiver buffers can avoid the buffer blocking 
problem mentioned above. Regardless of the timeout, the min-
imum receiver buffer size to avoid blocking should be at least 
twice the product of the sum of bandwidths of all subflows and 
the RTT of the slowest subflow (i.e., 2(SiBWi)RTTmax), which 
is recommended by MPTCP [4]. When high bandwidth paths 
coexist with high latency paths, this buffer requirement can 
be very large. Moreover, even with a sufficiently large receiver 
buffer, significant additional delay will be introduced due to 
reordering out-of-order segments from different paths [15]. 
Another solution is to limit the usage of slow paths, which may 
go against the bandwidth aggregation feature of MPTCP and 
discourage full utilization of network resources.

Y. Cui et al. [9] proposed a rateless-code-based MPTCP, 
called FMTCP, to address this problem. The main idea is to 
leverage the sequence-agnostic properties of rateless coding, 
where coded packets in the same block are sequence-agnostic 
and relatively independent of each other. Thus, with the use of 
coding, what matters is the percentage of packets lost rather 
than which packets are lost. FMTCP incorporated low-com-
plexity fountain codes into MPTCP and included a packet 
scheduling algorithm based on the estimation of the delivery 
time of each subflow.

M. Li et al. proposed to introduce network coding to parts of 
the subflows (NC-MPTCP) in [13] and then further explored 
the usage of systematic coding (SC-MPTCP) in [14]. They also 
adopted block coding and proposed sending a certain number 
of coded redundant packets at the beginning of a block. With 
systematic coding, the original packets are sent directly with-
out modification. To deal with underestimation of proactive 
redundancy, they proposed a pre-blocking warning mechanism 
to retrieve reactive redundancy from the sender to further 
avoid transmission blocking. When a subflow gets packets in 
order in the subflow-receiving queue but finds no space in the 
shared connection-level buffer, it signals the sender to trans-
mit the first unacknowledged packet on this path.

NS-based simulations of these works show that coding is 
effective in improving the performance of MPTCP. Compu-
tation overhead and coding delay may reduce the benefits 
of coding in real-world implementations; however, they are 
not considered in the simulations due to the limitation of the 
simulation methodology. Implementations and experimental 
results are needed to further explore the advantages and dis-
advantages of coding in MPTCP.

Conclusion and Future Prospects
In this article, we present several limitations of TCP including 
low throughput in wireless networks, high latency due to loss, and 
the out-of-order serving problem of multi-path TCP in heteroge-
neous multi-path networks. In these situations, coding serves as a 
complementary or alternative loss recovery method of TCP. We 
analyze what benefits coding can bring, discuss the opportunities 
and challenges of incorporating end-to-end FEC into TCP, and 
summarize the state of the art in this field of research.

Although there are a number of studies on applying coding 
in TCP, several problems remain open or have not been well 
addressed:
• First, the necessity of ensuring coded TCP variants to be 

TCP-friendly is disputable. TCP friendliness is important for 
TCP variants to work together with standard TCP, but may 
not be essential for networks where TCP can be entirely 
replaced. In this case, fair bandwidth sharing is enough.

• The impact of coding on congestion control should be care-
fully considered as coding may impact the congestion detec-
tion. A better protocol design is needed to decouple the 
coding and the congestion control, or new congestion con-
trol algorithms should work efficiently for coded TCP vari-
ants.

• It is difficult to trade off between the efficiency in bandwidth 
usage and the decoding probability. To choose an appro-
priate coding rate, it helps to accurately estimate the link 
quality and adapt the redundancy level in the coding. There 
is also a lack of codes that provide good loss tolerance while 
having low redundancy, especially when the flows are small.

• Comprehensive analysis and modeling are needed to indi-
cate when coding is useful for TCP. This article has only 
discussed part of the applications where coding can facili-
tate TCP transmissions, such as in heterogeneous multi-path 
networks. New scenarios on the use of coding with TCP can 
be further explored.
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