
68 IEEE Network • March/April 20160890-8044/16/$25.00 © 2016 IEEE

TCP is the most important transport protocol today, pro-
viding in-order reliable transmission of byte streams.

However, current network characteristics and application
requirements are far different from those when TCP was ini-
tially designed. TCP has limitations in many popular networks
such as wireless networks, high-speed networks, and heteroge-
neous multi-path networks.

TCP suffers from the problems of low throughput and high
latency due to its use of loss-based congestion control and
retransmission-based loss recovery schemes. Coding is prom-
ising in improving the performance of TCP by introducing
redundant information to encode packets for forward error
correction (FEC). This allows for faster loss recovery for TCP,
which helps to alleviate the issues associated with the through-
put, latency, and receiving buffer constraints. Although FEC
has been widely studied at the link layer as a complement to
automatic repeat request (ARQ), it has not been well explored
yet in TCP.

There are many challenges to apply coding with TCP. Cod-
ing can conflict with TCP design and deployment, and compro-
mise TCP friendliness. The data control and reliability of TCP
are tightly coupled with the congestion control in byte-orient-
ed sequence number management. The amount of redundant
information added for coding needs to be determined careful-
ly. There is a trade-off between reducing the coding overhead
and improving the transmission reliability at the cost of higher
transmission redundancy. To enable the practical use of cod-
ing in new protocols, it is essential to ensure backward com-
patibility for incremental deployment.

In this article, we explore the possibilities of designing a
practical transport protocol with better performance employ-
ing coding technologies. We first present the limitations of the
standard TCP, and explain how coding can be used in TCP.
We then analyze the opportunities and challenges of applying
coding in TCP, and discuss the strengths and weaknesses of

existing solutions. Finally, we conclude the work with a brief
summary.

End-to-End Coding for TCP: Opportunities
TCP has been observed to be ill suited for many emerging
applications. We first analyze the problems from the perspec-
tive of TCP design, and then present the opportunities that
coding technologies can bring to alleviate the problems.

Limitations of TCP
The inadequacy of standard TCP in wireless networks, high-
speed data center networks (DCNs), and heterogeneous multi-
path networks has been extensively documented. Here we list
three situations where coding has potential to improve the
TCP performance.

First, packet loss may result in TCP throughput much lower
than the available path capacity. TCP regards losses as indi-
cations of congestion and halves its congestion window in fast
retransmission or resets to the initial value upon timeout.
However, packet losses may be caused by reasons other than
congestion. For example, TCP can mistakenly take the losses
due to bad link conditions as congestion signals and reduce its
window size unexpectedly although the path is uncongested.
This significantly affects the performance as the throughput of
TCP is approximately inversely proportional to the square root
of the packet loss rate [1].

In addition, TCP does not differentiate between congestion
levels, and reacts sharply to transient and mild congestion. For
high bandwidth and high delay networks, it will take a long
time to reach the available bandwidth after a loss. It is report-
ed that a single packet loss in 10,000 is enough to reduce TCP
throughput to a third over a 50 ms gigabit link, and one loss in
1000 leads the throughput to drop by an order of magnitude
[2].

Second, delay-sensitive applications (i.e., real-time or
interactive applications) suffer from slow recovery of lost
packets in TCP. Packet losses are detected by either triple
duplicate acknowledgments or retransmission timer expiration.
Although the first method targets fast lost packet retransmis-
sion, the recovery delay is still high as at least three packets

Abstract
Although widely used, TCP has many limitations in meeting the throughput and
latency requirements of applications in wireless networks, high-speed data center
networks, and heterogeneous multi-path networks. Instead of relying purely on
retransmission upon packet loss, coding has potential to improve the performance
of TCP by ensuring better transmission reliability. Coding has been verified to work
well at the link layer but has not been fully studied at the transport layer. There are
many advantages but also challenges in exploiting coding at the transport layer.
In this article, we focus on how to leverage end-to-end coding in TCP. We reveal
the problems TCP faces and the opportunities coding can bring to improve TCP
performance. We further analyze the challenges faced when applying the coding
techniques to TCP and present the current applications of coding in TCP.

End-to-End Coding for TCP
Yong Cui, Lian Wang, Xin Wang, Yisen Wang, Fengyuan Ren, and Shutao Xia

Young Cui, Lian Wang, Yisen Wang, Fengyuan Ren, and Shutao Xia are
with Tsinghua University.

Xin Wang is with State Universitiy of New York at Stony Brook.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 04:37:52 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • March/April 2016 69

after the loss need to be received to confirm loss. In addition,
the measurement results show that most losses occur at tails
for latency-sensitive flows and are repaired through expensive
retransmission timeouts (RTOs) [3]. The minimum value of an
RTO is normally set to 200 ms, which is too long for low-laten-
cy networks such as DCNs.

The packets behind the lost one(s) cannot be properly deliv-
ered to applications until the losses are recovered, thus hurting
the quality of user experience of latency-sensitive applications.
It is well known that web latency inversely correlates with
revenue and profit. For instance, Amazon estimates that every
100 ms increase in latency cuts profits by 1 percent [3]. Thus, a
faster loss recovery mechanism is desired.

The third issue is the buffer limitation as a result of out-
of-order delivery. When a packet is lost or delayed, the sub-
sequent packets need to be stored in the receiving buffer of
TCP. Once the receiving buffer is fully occupied by out-of-or-
der packets, the advertising window decreases to zero, which
triggers the flow control mechanism driven by receivers. As
a result, data transmissions are blocked even when the link is
unoccupied, which not only reduces the throughput but also
introduces a large delay.

The receiving buffer size is usually recommended to be set
to twice the bandwidth-delay product (BDP), which allows
the transmission to continue during fast retransmission [4].
However in heterogeneous multi-path networks, even if the
BDP of every single path is small, the buffer size can still be a
problem. To make full use of such heterogeneous networks, a
multi-path extension of TCP, called Multi-Path TCP (MPTCP)
[4], has been proposed to build multiple subflows in one con-
nection. The subflows generally go through different paths
and are transmitted concurrently. The BDP of MPTCP is cal-
culated as the product of the aggregate bandwidth and the
maximum round-trip time (RTT) of different paths, which is
often much larger than that of single-path TCP. As the RTTs
and loss rates of subflows can be very different, especially in
heterogeneous networks, the buffer size could be set too large
in MPTCP.

Coding for TCP
Coding is promising to solve the problems mentioned above
as it can provide better reliability and loss tolerance and faster
loss recovery for TCP. The usefulness of coding for TCP was
first investigated and verified by G. Karlsson et al. [5].

The main function of coding for TCP is to perform FEC.
With FEC, a sender encodes its messages in a redundant way
by using an error correction code (ECC), and the receiver can
recover the lost packets if enough coded packets are received
without waiting for retransmission. FEC is not currently used
in default TCP. To incorporate FEC into TCP, coding is not
applied at the bit level, but at the packet level.

Coding at the packet level is commonly referred to as net-

work coding. The basic idea of network coding
is to mix data from different packets across time
and across flows into one packet. It has now been
used at various layers including the application
layer, transport layer, network layer, and even
link layer. The coded packets are usually linear
combinations of the source packets. For example,
as illustrated in Fig. 1, an unlimited number of
random linear combinations of the four source
packets can be generated and sent over lossy
channels. When four arbitrary linear independent
coded packets are received, the four source pack-
ets can be recovered.

Applying coding in TCP has several advan-
tages. First, coding in TCP is complementary to

approaches such as multipath opportunistic routing, which
exploits the broadcast nature of the wireless medium. Second,
it is unnecessary to make changes in network devices such as
routers, switches, and network interfaces. Third, to implement
coding, the option field of TCP can be leveraged to negotiate
whether coding can be used. Moreover, to help better sched-
ule the coding process, network condition parameters such as
RTT, congestion level, loss rate, and bandwidth can be esti-
mated in TCP. Finally, the socket buffers of TCP can be used
directly to store data for encoding and decoding.

End-to-end Coding for TCP: Challenges
The design and implementation of coding techniques for TCP
need to address several issues pertaining to usability and effec-
tiveness. We summarize the five main design issues in Table
1, including TCP friendliness, congestion control, redundancy
tuning, coding overhead, and compatibility. They can be used
as the evaluation criteria for the design of coded TCP variants.

TCP Friendliness
It is important to ensure fair sharing of network resourc-
es among different flows. With the widespread deployment
of TCP, the discussion of fairness for transport protocols
moves toward TCP-friendly, which means that new transport
protocols should behave like an ordinary TCP flow under
congestion conditions and share no more bandwidth than a
TCP flow when competing for the same link [6]. To ensure
TCP-friendly transmissions, a flow should not send more
packets than an ordinary TCP flow under comparable condi-
tions. On the other hand, coding schemes introduce redun-
dancy to recover the lost packets. There is a trade-off when
enforcing coded TCP variants to be friendly with standard
TCP. When the loss rate is high, coded TCP will generally
have higher goodput while standard TCP is kept busy with
retransmissions; however, the goodput of coded TCP may be
lower when the loss rate is low. Coded TCP can enjoy a high-
er benefit and can be more flexible to apply in a new network
environment not dominated by conventional TCP, such as in
the popular DCNs.

Congestion Control
Congestion control algorithms play an important role in
TCP. The Internet Engineering Task Force (IETF) standard-
ized TCP congestion control algorithm is based on Reno,
which takes loss as the signal of congestion. Other types of
delay-based congestion control algorithms such as Vegas
and Westwood monitor congestion based on estimation of
RTT. Introducing coding into TCP may impact congestion
detection (loss detection or RTT estimation) to different
extents depending on the design of codes and acknowledg-
ment methods. As coding can mask packet losses, it may

Figure 1. Example of coding for TCP.

2p
1p

3p

0p

Source
packets

Coded
packets

1

1

3

3

1

20

0

p

2p

p

3p

p p p p

2p
1p

3p

0p

Received
packets

Decoded
packets

lost

lost
Encoding Transmitting Decoding

Sender ReceiverLossy channel

0 2
p p

p p

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 04:37:52 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • March/April 201670

seriously affect loss detection. Relatively speaking, RTT esti-
mation is easier to be maintained and has fewer restrictions
on the use of coding.

Redundancy Tuning
The use of coding helps to recover lost data more quickly
at the cost of higher bandwidth consumption. Decoding will
fail if the number of redundant packets is smaller than that
of the lost ones, in which case coding-based recovery falls
back to acknowledgment-based recovery and provides little
benefit. To make full use of bandwidth as well as recover
data immediately, coding rate should be tuned properly. Pre-
cise estimation and prediction of loss rate can help deter-
mine the appropriate coding rate proactively; however, the
prediction is difficult for a network with varying conditions.
On the other hand, timely and adequate feedback is useful
for adjusting the coding rate reactively. Moreover, due to
the buffer or delay limit, block codes (also referred to as
batch-based codes) are often used. To reduce the latency, it
may help to increase the redundancy and carefully select an
appropriate block size.

Coding Overhead
Coding would naturally introduce extra overhead. First,
it takes time to perform encoding and decoding, which
introduces extra latency. For latency-sensitive applications,
coding latency cannot be ignored. Second, the redundan-
cy introduced by coding costs extra bandwidth. Enough
redundant packets are needed to compensate for lost ones.
In addition, for protocols to deliver the coding informa-
tion, additional bandwidth will incur cost to transmit a cod-
ing header to indicate the information of which the coded
packet consists and how many coded symbols are received.
Third, the coding process uses computation resources and
may induce energy problems for power-constrained mobile
terminals. Coding can be useful only when its gain is larger
than the overheads.

Compatibility
For TCP extensions, compatibility is also an issue. The com-
patibilities mainly include application compatibility, TCP
compatibility, and network compatibility [4]. Application
compatibility can be realized through socket extensions. TCP
compatibility is included in TCP friendliness and has been
discussed separately. For network compatibility, coded TCP is
expected to work transparently in the presence of various mid-
dleboxes in the Internet, which may be difficult to handle. The
compatibility requirements make the design of coded TCP
variants more complex [10].

Applications
There have been some research effort on exploiting end-to-
end coding to improve TCP performance. In this section, we
review the work on three typical categories of applications:
improving the throughput of wireless networks, reducing the
latency caused by loss, and solving the out-of-order problem
of MPTCP in heterogeneous multi-path networks. The main
characteristics of the presented work are summarized and
compared in Table 2.

Improve Throughput of Wireless Networks
In wireless networks, the dynamic and uncertain transmission
medium makes loss a common problem. Due to the loss-based
congestion control used in TCP, wireless losses can cause
sending rate reduction and consequent significant throughput
degradation even when the network is not congested. Schemes
to solve this problem can be classified into three broad cat-
egories: end-to-end protocols to recover the loss at senders;
link-layer protocols to provide local transmission reliability;
and split-connection protocols that break the end-to-end con-
nection into two parts in intermediate nodes. While end-to-
end schemes are not as effective as local recovery techniques
in handling wireless losses, they are promising since significant
gains can be achieved without requiring extensive support at
the network and link layers at routers and base stations [5].

The basic idea of end-to-end coding is to add redundancy
to facilitate loss recovery. Given a certain loss probability, an
amount of redundancy is injected into the transmission flow
such that there are no more lost packets than redundant ones.
Actually, the loss rate of a path may be very dynamic and can-
not be precisely estimated. L. Baldantoni et al. [5] developed
an adaptive algorithm to choose the optimal number of redun-
dancy packets considering the connection environment. The
RTT is estimated in a normal way, while the bandwidth and
loss rate are estimated in a similar way through explicit feed-
back from the receiver. Experiments show that TCP with cod-
ing outperforms the existing TCP (New Reno and SACK) over
a large range of loss probability and propagation delay. Note
that end-to-end coding also recovers losses caused by conges-
tion; hence, Reno-based congestion control becomes invalid.

A complete protocol design of a coded TCP variant called
TCP/NC is presented from theory to implementation in [7].
TCP/NC introduced a new acknowledgment mechanism based
on “degree of freedom” (i.e., a linear combination that reveals
one unit of new information) to incorporate coding into the
control algorithm. The receiver acknowledges every degree
of freedom even if this is not done for a new packet immedi-
ately. For easier deployment, TCP/NC imports a new network

Table 1. Challenges of applying coding in TCP.

Challenges Classifications Factors

TCP friendliness [6]
Steady state
Transient state

Fairness
Aggressiveness and responsiveness

Congestion control [7, 8]
Loss-based (Reno)
Delay-based (Vegas/Westwood)
ECN-based

Differentiate wireless loss from congestion loss
Fairness
Network compatibility

Redundancy tuning [3, 9]
Proactive
Reactive

Packet loss detection and loss model prediction
Feedback-based scheduling

Coding overhead [7, 9]
Time cost
Bandwidth cost
Computation cost

Code complexity and data arriving rate
Redundancy setting and coding header for synchronization
Code complexity and code implementation

Compatibility [4, 10]
Network compatibility
Application compatibility

Middleboxes
Socket extensions

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 04:37:52 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • March/April 2016 71

coding (i.e., NC) layer between the transport layer and the
network layer to minimize changes to protocols. The network
coding layer conducts buffering and encoding, decoding, and
acknowledgment at the sender and receiver, respectively.

The authors first use TCP-Vegas as it is more compatible
with their modifications. Furthermore, a real-world implemen-
tation with TCP-Reno is presented. Both obtain significant
gains in throughput over standard TCP in the presence of
lossy network links. The fairness of TCP is maintained in the
absence of losses (i.e., the loss rate is set to 0, and no redun-
dancy packet is added), while TCP friendliness is still harmed
in lossy networks. TCP/NC adds a coding header on top of the
TCP header to communicate packet combination, which dam-
ages the TCP/IP header and may conflict with middleboxes
that read TCP headers. Moreover, the coding header intro-
duces a large overhead (i.e., when the coding window has n
packets, every coded packet needs to carry 4n + 7 extra bytes
at the header). Besides, TCP/NC adopts random linear coding
and decodes by performing Gaussian elimination, which has
high computation complexity, and the latency introduced by
coding has not been considered yet. Finally, the estimation of
the various parameters of TCP/NC (e.g., the loss rate) accord-
ing to the connection environment are not mentioned.

The above two methods solved the wireless loss problem
but cannot react to congestion effectively. To differentiate
between wireless loss and congestion, LT-TCP [8] exploits
ECN to assist coding in TCP. Timeout effects due to packet
erasures are combated using a dynamic and adaptive FEC
scheme that includes adaptation of TCP’s maximum seg-
ment size. Proactive and reactive FEC overhead enhance
TCP SACK to protect original segments and retransmissions,
respectively. LT-TCP improves TCP performance even for
packet loss rates up to 30 percent.

Reducing Latency Caused by Loss
As mentioned above, timely transmission is critical for some
web flows and data center flows. Web flows play increasingly
important roles with the popularity of mobile applications,
while web service providers are still troubled by the latency
problem. For data center networks, the partition-aggregation
workflow pattern requires that every flow have low latency in
order to provide real-time performance to users.

T. Flach et al. [3] performed a measurement study of bil-

lions of latency-sensitive TCP connections and found that
flows with packet loss take on average five times longer to
complete than those without any loss due to the loss detection
and recovery mechanism of TCP. Measurements show that
most losses occur at the tail of a transmission burst, which
does not have enough acknowledgments to trigger fast retrans-
mission; thus, losses are recovered through expensive retrans-
mission timeouts (RTOs).

Unnecessary round-trips or RTOs during loss recovery have
hampered further latency improvement as the RTT required
between clients and servers largely determines the overall
latency of most latency-sensitive flows. Simply reducing the
interval of RTO does not address the latency problem due
to frequent spurious timeouts and window reductions. Thus,
they see the demand for and potentiality of reducing latency
through the use of coding with TCP.

FEC coding is promising in reducing the delivery latency
of TCP flows by providing loss recovery without introducing
round-trip delay. As latency-sensitive flows are generally short,
the bandwidth overhead introduced by coding can be neglect-
ed. T. Flach et al. [3] proposed a low-overhead mechanism
referred to as corrective to cooperate FEC with coding. Cor-
rective adds a coded packet for each window of packets, which
has low bandwidth overhead. The coding is done by XORing
the payload of packets in the window, which has low computa-
tion overhead.

Corrective is designed as a TCP extension and uses TCP
options to deliver the number of bytes that the payload
encodes. Packet losses that are recovered with coded packets
will be indicated explicitly using a corrective option along with
acknowledgments. Corrective can recover a single packet loss
in one window. If more than one packet is lost, the receiver
will notify the sender with a corrective option to trigger fast
recovery. Experiments show that Corrective significantly reduc-
es the average latency and the tail of latency.

Corrective is mainly designed for congestion loss in the data
center environment, where loss rate is relatively low. In wire-
less transmission scenarios, higher redundancy is needed to
recover more than one loss in one window. With the goal of
lower latency, the codes must have low complexity.

Besides exploiting coding to reduce the latency by adding
redundant transmissions, replicated flows can also be transmit-
ted. In data center scenarios, the demand for consistent low

Table 2. Applications of coding for TCP.

Year Goal Networks TCP-
friendly

Congestion
control

Path
estimation Rateless Retransmit Middle-

boxes

TCP/NC [7] 2011 Throughput Wireless Aggressive Vegas Yes Yes No No

A-FEC [5] 2004 Throughput Wireless Aggressive Reno-based Yes Yes Yes No

LT-TCP [8] 2005 Throughput Wireless Aggressive Reno-based Yes Yes Yes No

Corrective [3] 2013 Latency DCN
Slightly
aggressive

Reno-based No No Yes Yes

Redundancy [11] 2012 Latency — — — — — — —

Repflow [12] 2014 Latency — — — — — — —

FMTCP [9] 2014 Both
Multi-
path

Friendly Reno-based Yes Yes No Yes

NC-MPTCP [13] 2012 Both
Multi-
path

Friendly Reno-based Yes Yes No No

SC-MPTCP [14] 2014 Both
Multi-
path

Friendly Reno-based Yes Yes No No

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 04:37:52 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • March/April 201672

latency outweighs the need to save the bandwidth. Replication
of flows is the main method to apply to improve transmission
reliability [11, 12]. Also in [3], T. Flach et al. proposed proac-
tive, which takes the aggressive stance of proactive transmis-
sions of copies of each TCP segment.

Unlike replication, coding improves reliability via data
redundancy, which is more flexible in a redundancy setting
and can use bandwidth more efficiently. Moreover, with pack-
et-level equal cost multi-path (ECMP) routing, coding can
leverage path redundancy after eliminating the out-of-order
problem.

Heterogeneous Multi-Path Networks
After much discussion, the idea of concurrent multi-path
transferring has finally been standardized as a multi-path
extension of TCP (MPTCP) [4]. MPTCP aims to make full use
of the capacity of heterogeneous networks concurrently. But
we need to solve the problem of out-of-order delivery to meet
its potential.

MPTCP connections have one or more TCP subflows, each
of which behaves like one TCP flow. The subflows of one
MPTCP connection usually follow different paths in heteroge-
neous multi-path networks, and experience different RTT and
loss rates. If one packet is lost on the slowest path, the receiver
window cannot advance until the lost packet is recovered. The
duration from sending packets to receiving the acknowledg-
ment will be 2RTT if it is recovered through fast recovery and
RTT + RTO if it is recovered through timeout retransmission.
During loss recovery, if the receiver buffer is full, the subflows
cannot send new packets even if their links are unoccupied.
Thus, fast and reliable flows would be blocked by bad flows.

Large enough receiver buffers can avoid the buffer blocking
problem mentioned above. Regardless of the timeout, the min-
imum receiver buffer size to avoid blocking should be at least
twice the product of the sum of bandwidths of all subflows and
the RTT of the slowest subflow (i.e., 2(SiBWi)RTTmax), which
is recommended by MPTCP [4]. When high bandwidth paths
coexist with high latency paths, this buffer requirement can
be very large. Moreover, even with a sufficiently large receiver
buffer, significant additional delay will be introduced due to
reordering out-of-order segments from different paths [15].
Another solution is to limit the usage of slow paths, which may
go against the bandwidth aggregation feature of MPTCP and
discourage full utilization of network resources.

Y. Cui et al. [9] proposed a rateless-code-based MPTCP,
called FMTCP, to address this problem. The main idea is to
leverage the sequence-agnostic properties of rateless coding,
where coded packets in the same block are sequence-agnostic
and relatively independent of each other. Thus, with the use of
coding, what matters is the percentage of packets lost rather
than which packets are lost. FMTCP incorporated low-com-
plexity fountain codes into MPTCP and included a packet
scheduling algorithm based on the estimation of the delivery
time of each subflow.

M. Li et al. proposed to introduce network coding to parts of
the subflows (NC-MPTCP) in [13] and then further explored
the usage of systematic coding (SC-MPTCP) in [14]. They also
adopted block coding and proposed sending a certain number
of coded redundant packets at the beginning of a block. With
systematic coding, the original packets are sent directly with-
out modification. To deal with underestimation of proactive
redundancy, they proposed a pre-blocking warning mechanism
to retrieve reactive redundancy from the sender to further
avoid transmission blocking. When a subflow gets packets in
order in the subflow-receiving queue but finds no space in the
shared connection-level buffer, it signals the sender to trans-
mit the first unacknowledged packet on this path.

NS-based simulations of these works show that coding is
effective in improving the performance of MPTCP. Compu-
tation overhead and coding delay may reduce the benefits
of coding in real-world implementations; however, they are
not considered in the simulations due to the limitation of the
simulation methodology. Implementations and experimental
results are needed to further explore the advantages and dis-
advantages of coding in MPTCP.

Conclusion and Future Prospects
In this article, we present several limitations of TCP including
low throughput in wireless networks, high latency due to loss, and
the out-of-order serving problem of multi-path TCP in heteroge-
neous multi-path networks. In these situations, coding serves as a
complementary or alternative loss recovery method of TCP. We
analyze what benefits coding can bring, discuss the opportunities
and challenges of incorporating end-to-end FEC into TCP, and
summarize the state of the art in this field of research.

Although there are a number of studies on applying coding
in TCP, several problems remain open or have not been well
addressed:
• First, the necessity of ensuring coded TCP variants to be

TCP-friendly is disputable. TCP friendliness is important for
TCP variants to work together with standard TCP, but may
not be essential for networks where TCP can be entirely
replaced. In this case, fair bandwidth sharing is enough.

• The impact of coding on congestion control should be care-
fully considered as coding may impact the congestion detec-
tion. A better protocol design is needed to decouple the
coding and the congestion control, or new congestion con-
trol algorithms should work efficiently for coded TCP vari-
ants.

• It is difficult to trade off between the efficiency in bandwidth
usage and the decoding probability. To choose an appro-
priate coding rate, it helps to accurately estimate the link
quality and adapt the redundancy level in the coding. There
is also a lack of codes that provide good loss tolerance while
having low redundancy, especially when the flows are small.

• Comprehensive analysis and modeling are needed to indi-
cate when coding is useful for TCP. This article has only
discussed part of the applications where coding can facili-
tate TCP transmissions, such as in heterogeneous multi-path
networks. New scenarios on the use of coding with TCP can
be further explored.

Acknowledgment
This work is supported by National Natural Science Founda-
tion of China (NO. 61422206, 61120106008, 61371078), NSF
grants CNS 1247924, and ECCS 1408247.

References
[1] J. Padhye et al., “Modeling TCP throughput: A Simple Model and Is Empir-

ical Validation,” Proc. ACM SIGCOMM Comp. Commun. Rev., vol. 28,
no. 4. 1998, pp. 303–14.

[2] M. Balakrishnan et al., “Maelstrom: Transparent Error Correction for Com-
munication Between Data Centers,” IEEE/ACM Trans. Networking, vol.
19, no. 3, 2011, pp. 617–29.

[3] T. Flach et al., “Reducing Web Latency: The Virtue of Gentle Aggression,”
Proc. ACM SIGCOMM 2013, 2013, pp. 159–70.

[4] A. Ford et al., “Architectural Guidelines For Multipath TCP Development,”
IETF Informational RFC, vol. 6182, 2011, pp. 2070–2721.

[5] L. Baldantoni, H. Lundqvist, and G. Karlsson, “Adaptive End-to-End FEC For
Improving TCP Performance Over Wireless Links,” Proc. 2004 IEEE ICC,
vol. 7, 2004, pp. 4023–27.

[6] S.-C. Tsao, Y.-C. Lai, and Y.-D. Lin, “Taxonomy and Evaluation of
TCP-Friendly Congestion-Control Schemes on Fairness, Aggressiveness, and
Responsiveness,” IEEE Network, vol. 21, no. 6, 2007, pp. 6–15.

[7] J. K. Sundararajan et al., “Network Coding Meets TCP: Theory and Imple-
mentation,” Proc. IEEE, vol. 99, no. 3, 2011, pp. 490–512.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 04:37:52 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • March/April 2016 73

[8] O. Tickoo et al., “LT-TCP: End-to-End Framework to Improve TCP Perfor-
mance over Networks with Lossy Channels,” Proc. IWQoS 2005, Spring-
er, 2005, pp. 81–93.

[9] Y. Cui et al., “FMTCP: A Fountain Code-Based Multipath Transmission
Control Protocol,” IEEE/ACM Trans. Networking, vol. 23, no. 2, 2015,
pp. 465–78.

[10] M. Honda et al., “Is it Still Possible To Extend TCP?” Proc. 2011 ACM
SIGCOMM Internet Measurement Conf., ACM, 2011, pp. 181–94.

[11] A. Vulimiri et al., “More is Less: Reducing Latency via Redundancy,” Proc.
11th ACM Workshop on Hot Topics in Networks, 2012, pp. 13–18.

[12] H. Xu and B Li, “Repflow: Minimizing Flow Completion Times with Repli-
cated Flows in Data Centers,” IEEE INFOCOM 2014, 2014.

[13] M. Li, A. Lukyanenko, and Y. Cui, “Network Coding Based Multipath
TCP,” Proc. IEEE INFOCOM Wksps. 2012, 2012, pp. 25–30.

[14] M. Li et al., ”Tolerating Path Heterogeneity in Multipath TCP with Bound-
ed Receive Buffers,” Computer Networks, vol. 64, 2014, pp. 1–14.

[15] Y.-C. Chen et al., “A Measurement-Based Study of Multipath TCP Perfor-
mance over Wireless Networks,” Proc. 2013 Internet Measurement Conf.,
ACM, 2013, pp. 455–68.

Biographies
Yong Cui [M] (cuiyong@tsinghua.edu.cn) received his B.E. and Ph.D. degrees
in computer science and engineering from Tsinghua University, China, in 1999
and 2004, respectively. He is currently a full professor at Tsinghua University,
and Co-Chair of the IETF IPv6 Transition WG Softwire. His major research
interests include mobile wireless Internet and computer network architecture.
Having published more than 100 papers in refereed journals and conferences,
he received the National Award for Technological Invention in 2013, and the
Influential Invention Award of China Information Industry in both 2012 and
2004. Holding more than 40 patents, he has authored 3 Internet standard
documents, including RFC 7040 and RFC 5565, for his proposal on IPv6
transition technologies. He serves on the Editorial Boards of IEEE TPDS and
IEEE TCC.

Lian Wang (wanglian.cst@gmail.com) received her B.E. degree in computer
science and engineering from Tsinghua University in 2008. She is now a Mas-
ter’s student in the Department of Computer Science and Technology, Tsinghua
University. Her supervisor is Prof. Yong Cui. Her research interests include
rateless coding and mobile wireless Internet.

Xin Wang [M] (xwang@ece.sunysb.edu) received her B.S. and M.S. degrees
in telecommunications engineering and wireless communications engineering,

respectively, from Beijing University of Posts and Telecommunications, China,
and her Ph.D. degree in electrical and computer engineering from Columbia
University, New York. She is currently an associate professor in the Department
of Electrical and Computer Engineering, State University of New York at Stony
Brook. Her research interests include algorithm and protocol design in wireless
networks and communications, mobile and distributed computing, as well as
networked sensing and detection. She has served on the Executive Committees
and Technical Committees of numerous conferences and funding review pan-
els, and is a referee for many technical journals. She achieved the NSF career
award in 2005, and the ONR challenge award in 2010.

Yisen Wang (eewangyisen@gmail.com) received his B.E. degree in electrical
engineering from South China University of Technology in 2014. He is now
a Ph.D. candidate in the Department of Computer Science and Technology,
Tsinghua University. His supervisor is Prof. Shutao Xia. His research interests
include coding theory and networking.

FengYuan Ren [M] (renfy@tsinghua.edu.cn) received his B.A and M.Sc.
degrees in automatic control from Northwestern Polytechnic University, China,
in 1993 and 1996, respectively. In December 1999, he obtained his Ph.D.
degree in computer science from Northwestern Polytechnic University. He is
currently a professor in the Department of Computer Science and Technology
at Tsinghua University. From 2000 to 2001, he worked in the Electronic Engi-
neering Department of Tsinghua University as a postdoctoral researcher. In Jan-
uary 2002, he moved to the Computer Science and Technology Department of
Tsinghua University. His research interests include network traffic management
and control, control in/over computer networks, wireless networks, and wire-
less sensor networks. He has (co)-authored more than 80 international journal
and conference papers. He has served as a Technical Program Committee
member and Local Arrangement Chair for various IEEE and ACM international
conferences.

shutao Xia (xiast@sz.tsinghua.edu.cn) received his B.S. degree in mathematics
and Ph.D. degree in applied mathematics from Nankai University, Tianjin,
China, in 1992 and 1997, respectively. Since January 2004, he has been
with the Graduate School of Shenzhen of Tsinghua University, where he is cur-
rently a professor. From March 1997 to April 1999, he was with the Research
Group of Information Theory, Department of Mathematics, Nankai University.
From September 1997 to March 1998 and from August to September 1998,
he visited the Department of Information Engineering, Chinese University of
Hong Kong. His current research interests include coding theory, information
theory, and networking. He has published more than 40 papers in IEEE Trans-
actions on Information Theory and other core domestic journals.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 04:37:52 UTC from IEEE Xplore. Restrictions apply.

